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Differential Geometry studies smooth geometric objects, as (smooth)
surfaces, curves, etc.

Discrete Geometry studies geometric object with a finite number of
elements (for instance, polyedra).

What about Discrete Differential Geometry?

In a sense, Discrete Differential Geometry aims at studying discrete
equivalents of tools coming from Differential Geometry, such as
• curvature
• (Backlünd) transformations

Discrete Differential Geometry
continuous

limit−→ Differential Geometry
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How to discretize Differential Geometry?

One can discretize Differential Geometry by discretizing its description in
terms of PDEs, but the Discrete Differential Geometry aims at discretize
the geometric object of the (classical) Differential Geometry, not just the
PDEs describing some phenomena.

So, there are many ways to discretize Differential Geometry.

What is the best way?

One possible way is to discretize taking into account the symmetry
properties of the problem.
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Discretizing Lagrangian equations
Let L : TQ = (q, q̇)→ R be a Lagrangian function.

S[c] =
∫ 1

0
L(c(t), ċ(t))dt , d

dt
∂L
∂q̇ −

∂L
∂q = 0

(A possible) discrete version LD : Q × Q → R
Let us assume for simplicity that Q is a vector space

L(q, q̇) = 1
2m‖q̇‖2 =⇒ LD(q, q+) = 1

2m
(

q+ − q
h

)2

The discrete functional is

SD =
∑

k
L
(
qk , qk+1

)
, qk = q(tk)

(over a discrete trajectory) and the discrete Euler-Lagrange equation is

d1L(qk , qk+1) + d2L(qk−1, qk) = 0
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Example: falling objects

• Continuous time

q̈ = −g

g being the gravity acceleration.

• Discrete time

(qk+1 − qk)− (qk − qk−1) = qk+1 − 2qk + qk−1 = −g
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Discretizing a surface
• A map f : R2 → R3 is called a 2-dimensional conjugate net in R3 iff
∂2

ij f ∈ 〈∂i f , ∂j f 〉.

• If the net is orthogonal, then the coordinate curves are curvature lines.

• A map f : Z2 → R3 is called a discrete 2-dimensional conjugate net in
R3 iff the elementary quadrilaterals are planar.
• It is called circular if any elementary quadrilaterals is inscribed in a circle
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f : (εZ)2 → R3 ε→0−→ f : R2 → R3

f : (ε1Z)× (ε2Z)× (ε3Z)→ R3 ε1,ε2→0,ε3=1−→−→ f : R2 × Z→ R3
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Discretization from symmetry properties

Let H be the mean curvature and K the Gaussian curvarture. It is well
known that H2 − K is a conformal invariant.

The Willmore functional is

W(S) = 1
4

∫
S

(k1 − k2)2dA =
∫

S
(H2 − K )dA

is also conformal invariant.

A ”good” discretization of this functional must be conformal-invariant:
6 isometries + 1 dilatation + 3 inversions.

One can try to discretize both the mean and Gaussian curvature.
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Discretization of curvatures
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Discretization of curvatures
Let us do it for a simplicial polyhedron.

Area =
∑

f ∈Faces
A(f ) + ε

∑
e∈Edges

θe + ε2
∑

v∈Vertices
θv

θe −→ mean curvature H
θv −→ Gaussian curvature K = 2π −

∑
i αi
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Is the mean curvature and the Gaussian one ”good” to define a discrete
Willmore functional?

The functional
W(v) =

∑
e3v

β(e)− 2π

over all edges incident to v is conformal invariant.

W(S) =
∑

v∈Vertices
W(v)
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